REACTIONS OF AMINOQUINOLINES

WITH UNSATURATED CARBOXYLIC ACIDS.

4*. SYNTHESIS OF 4-CARBOXY-

1-QUINOLYL-2-PYRROLIDINONES

Z. I. Beresnevicius and V. Viliunas

1-Quinolyl-4-carboxy-2-pyrrolidinones have been synthesized by the reaction of aminoquinolines with itaconic acid. Decyclization of the products gave 2-(quinolylaminomethyl)succinic acids.

Keywords: quinolylaminobutanoic acid, 1-quinolyl-4-carboxy-2-pyrrolidinones, biological activity.

Pyrrolidinone derivatives are of interest as compounds possessing a wide range of valuable properties. They show growth regulating [2], psychotropic and antitumor [3] effects, and they are used for the synthesis of medicinals [4].

It seemed to us to be interesting to prepare the previously undescribed 1-quinolyl-3-carboxy-2-pyrrolidinones 2. These compounds were synthesized in 30-60% yields by heating the corresponding aminoquinolines 1 with itaconic acid in water or toluene.

a R =
$$4-C_9H_6N$$
; **b** R = $5-C_9H_6N$; **c** R = $2-CH_3-5-C_9H_5N$; **d** R = $6-C_9H_6N$; **e** R = $2-CH_3-6-C_9H_5N$; **f** R = $4-CH_3-8-C_9H_5N$; **g** R = $5-Br-8-C_9H_5N$

Pyrrolidinones 2 are stable to acid hydrolysis. The sodium salts of carboxypyrrolidinones 3 are obtained by treatment of compounds 2 with an equivalent amount of alkali, but heating with an excess of alkali caused opening of the pyrrolidinone ring to give disodium salts of 2-(quinolylaminomethyl)succinic acid 4. The free 2-(quinolylaminomethyl)succinic acids were not isolated: neutralization or acidification of salts 4 solutions gave the cyclic compounds 2.

Kaunus Technological University, Kaunas 3028, Lithuania; e-mail: zigmuntas.beresnevicius@ctf.ktu.lt. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 932-935, July, 2000. Original article submitted February 15, 1999.

^{*} For Communication 3, see [1].

TABLE 1. Physicochemical Characteristics of the Compounds Synthesized

-											
Com-	Empirical formula	1 0	Found, % Calculated, %	- a,	mp, "C (dec.),		H NMR spe	etrum*, 8, ppm (ec	11 NMR spectrum*. δ. ppm (coupling constants, Hz)	[z]	Yield.
book		Э	H	Z		CH ₁ (s)	CH2CO (d)	CH (m)	NCH ₂ (d)	arom., m	.
-	2	3	4	5	9	7	8	6	01	=	12
2а	C14H12N2O3	65.90 65.62	4.51 4.72	10.78 10.93	176, water		2.63-2.85 (m)	3.18-3.60	4.63 (J = 6)	6,40-8.33 (614)	89
2b	C14H12N2O1	65.47 65.62	4.61 4.72	10.84 10.93	273.		2.81 (J = 6)	3,20-3,68	4.10 (J = 8)	([19] 80.9-69.9	30
2c	CısHıaN2O3	66.48 66.66	5.40 5.22	10.19 10.36	244, ethanol	2.63	2.84 (J = 6)	3.22-3.72	4.12 (J = 7)	6.6-8.18 (5H)	47
P 7	C14H12N2O3	65.31 65.62	4.82	$\frac{10.93}{10.93}$	265. ethanol		2.95 (J = 6)	3.21-3.65	4.19 (J = 7)	7.6-9.05 (6H)	52
2 e	C ₁₅ H ₁₄ N ₂ O ₃	65.85 66.66	<u>5.39</u> 5.22	10.14 10.36	219, ethanol	2.60	2.79 (J = 8)	3.18-3.58	4.13 (J = 7)	7.25-8.28 (5H)	99
21	C ₁₅ H ₁₄ N ₂ O ₃	66.95 66.66	<u>5.10</u> <u>5.22</u>	10.26 10.36	202, ethanol	2.76	2.94 (J = 6)	3.18-3.61	4.09 (J = 7)	7.4-8.85 (5H)	36
2g	C ₁₄ H ₁₁ BrN ₂ O ₃	49.62 50.17	3.28	8.38 8.36	206,		2.81 (J = 9)	3.36-3.53	4.08-4.38 (m)	7.58-9.09 (5H)	31

TABLE 1 (continued)

-	2	٣	4	5	9	7	∞	6	10	=	12
38	C14H11N2O3Na	60.31	3.80	9.79	427		2.76 (J = 6)	2.91-3.38	3.38 (J = 8)	6.43-8.30 (6H)	100
		60.43	3.99	10.07	ethanoi						
36	C ₁₅ H ₁₃ N ₂ O ₃ Na	61.42	4.37	9.91	372.	2.74	2.84 (J=8)	3.03-3.48	4.23 (J = 8)	6.7-8.33 (5H)	001
		61.64	4.4x	9.59	ethanol						
34	C14H11N2O3Na	60.28	3.72	9.83	359.		2.85 (J = 8)	3.28-3.45	3.89 (J = 8)	7.46-8.70 (6H)	100
		60.43	3.99	10.07	ethanol						
Зе	C ₁₅ H ₁₃ N ₂ O ₃ Na	61.55	4.42	9.94	310,						100
		61.64	4.48	9.58	ethanol						
3g	C14H1aBrN2O3Na	46.84	2.68	7.54	291,						100
,		47.08	2.82	7.84	ethanol						
48	C14H12N2O4Na2	52.66	3.59	8.59	367.		2.55-2.88 (m)	3.18-3.58	3.46(J=4)	6.48-8.40 (6H)	44
		52.84	3.80	8.80	ethanol		-				
4c	C15H14N2O4Na2	54.02	10	8.21	383,	2.59	2.63-2.88 (m)	3.13-3.40	3.13-3.40 (m)	6.63-8.10 (511)	51
		54.22	4.25	8,43	ethanol		-		•		
4d	C14H12N2O4Na2	52.60	3.64	8.57	370.	_	2.38-2.65 (m)	2.83-3.20	3.20-3.45 (m)	6.58-8.38 (6H)	43
_		52.84	3.80	8.80	ethanol	_	_			_	

* Spectra of compounds 2a-f were recorded in CF₃COOH, 2g in DMSO-d₆, and 3 and 4 in D₂O.

The ^{1}H NMR spectra of pyrrolidinones 2 (in CF₃COOH) and their sodium salts 3 (in D₂O) contain doublets for the protons at C₍₃₎ and C₍₅₎ in the ranges 2.63-2.95 and 4.08-4.69 ppm, and multiplets for the protons on C₍₄₎ in the range 3.18-3.72 ppm. Comparison of the ^{1}H NMR spectra of compounds 3 and 4 shows that the protons of the methylene group in the NHCH₂ unit of aminocarboxybutanoic acids are shifted 0.9-1.1 ppm to high field relative to the analogous groups in the cyclic compounds 3.

Experiments carried out by L. L. Mironova (Dr. Med. Sci.) at the Institute for Poliomyelitis and Viral Encephalitis, Russian Academy of Sciences, showed that compounds 3 and 4 had stimulated the proliferation of isolated simian kidney cells. The decyclized derivatives of pyrrolidinones 3 did not have a significant effect on the proliferation.

EXPERIMENTAL

¹H NMR spectra were recorded with a Tesla BS-487 C (80 MHz) machine with HMDS as internal standard. The progress of reactions and the purity of products were monitored by TLC on Silufol and Silufol UV-254 strips. Physicochemical data on the compounds synthesized are given in Table 1.

4-Carboxy-1-quinolyl-2-pyrrolidinones 2. Itaconic acid (7.2 g, 55 mmol) and the corresponding aminoquinoline 1a,d,e (50 mmol) were boiled in water (40 ml) for 6 h, or 1b,c,e were boiled in toluene (40 ml) for 40 h. The reaction mixtures were then kept for a day at 5°C. The crystals formed were filtered off and recrystallized from ethanol.

Sodium Salts of 4-Carboxy-2-pyrrolidinones 3. The corresponding pyrrolidinone **2** (20 mmol) was dissolved in 90% ethanol (30 ml) containing sodium hydroxide (0.8 g, 20 mmol). The solution was poured into acetone (100 ml). The precipitate was recrystallized from ethanol.

Disodium 2-(Quinolylaminomethyl)succinates 4. Sodium hydroxide (1.2 g, 30 mmol) and pyrrolidinone **2** (14 mmol) were boiled in 60% ethanol (20 ml) for 4 h. The reaction mixture was then kept at 4°C. The crystals formed were filtered off, washed with ethanol and dried.

REFERENCES

- 1. Z. I. Beresnevicius and V. Viliunas, Khim. Geterotsikl. Soedin., No. 7, 925 (2000).
- 2. J. Fujiwara, S. Arai, M. Nishida, and M. Oyamada, Jap. Pat. 02115161; Chem. Abs., 113, 110935 (1990).
- 3. H. Jizuka, T. Oguchi, Y. Aoki, N. Ohto. K. Horikomi, T. Miwa, T. Kamioka, and S. Kawashima, *Eur. Pat. Appl.*, 668275; *Chem. Abs.*, **124**, 8606 (1996).
- 4. J. W. Lampe, Y. L. Chou, R. G. Hanna, S. V. Di Meo, P. W. Erhardt, W. R. Ingebretsen, and E. Cantor, J. Med. Chem., 36(8), 1041 (1993).